Commutative C-subalgebras of Simple Stably Finite C-algebras with Real Rank Zero

نویسنده

  • PING WONG
چکیده

Let X be a second countable, path connected, compact metric space and let A be a unital separable simple exact Z-stable real rank zero C∗-algebra. We classify all the embeddings (up to approximate unitary equivalence) of C(X) into A. Specifically, we prove the following: Theorem: Let α ∈ KL(C(X), A)+,1 and let λ : T (A) → T (C(X)) be an affine continuous map such that (i) if h ∈ Aff(T (C(X))) is such that h ≥ 0 and h is not the zero function then Aff(λ)(h)(τ) > 0 for every τ ∈ T (A); and (ii) if p is a projection in C(X)⊗K then λ(τ)(p) = τ(α(p)) for all τ ∈ T (A). Then there is a unital ∗-monomorphism φ : C(X) → A such that KL(φ) = α and T (φ) = λ. Theorem: Let φ,ψ : C(X) → A be unital ∗-monomorphisms. Then φ and ψ are approximately unitarily equivalent if and only if KL(φ) = KL(ψ) and τ ◦ φ = τ ◦ ψ for all τ ∈ T (A).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IDEAL J *-ALGEBRAS

A C *-algebra A is called an ideal C * -algebra (or equally a dual algebra) if it is an ideal in its bidual A**. M.C.F. Berglund proved that subalgebras and quotients of ideal C*-algebras are also ideal C*-algebras, that a commutative C *-algebra A is an ideal C *-algebra if and only if it is isomorphicto C (Q) for some discrete space ?. We investigate ideal J*-algebras and show that the a...

متن کامل

On the Classification of Simple Approximately Subhomogeneous C*-algebras Not Necessarily of Real Rank Zero

A classification is given of certain separable nuclear C*-algebras not necessarily of real rank zero, namely the class of simple C*-algebras which are inductive limits of continuous-trace C*-algebras whose building blocks have their spectrum homeomorphic to the interval [0, 1] or to a finite disjoint union of closed intervals. In particular, a classification of those stably AI algebras which ar...

متن کامل

Algebras with Locally Finite Decomposition

We introduce the notion of locally finite decomposition rank, a structural property shared by many stably finite nuclear C∗-algebras. The concept is particularly relevant for Elliott’s program to classify nuclear C∗algebras by K-theory data. We study some of its properties and show that a simple unital C∗-algebra, which has locally finite decomposition rank, real rank zero and which absorbs the...

متن کامل

Crossed Products by Finite Cyclic Group Actions with the Tracial Rokhlin Property

We define the tracial Rokhlin property for actions of finite cyclic groups on stably finite simple unital C*-algebras. We prove that the crossed product of a stably finite simple unital C*-algebra with tracial rank zero by an action with this property again has tracial rank zero. Under a kind of weak approximate innerness assumption and one other technical condition, we prove that if the action...

متن کامل

Real structure in unital separable simple C*-algebras with tracial rank zero and with a unique tracial state

Let A be a simple unital C∗-algebra with tracial rank zero and with a unique tracial state and let Φ be an involutory ∗-antiautomorphism of A. It is shown that the associated real algebra AΦ = {a ∈ A : Φ(a) = a∗} also has tracial rank zero. Let A be a unital simple separable C∗-algebra with tracial rank zero and suppose that A has a unique tracial state. If Φ is an involutory ∗-antiautomorphism...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006